
Nordic Collegiate Programming Contest
NCPC 2023

October 7, 2023

Problems
A Aperiodic Appointments
B Berry Battle 2
C Converting Romans
D Die Hard
E Electronic Components
F Factor-Full Tree
G Groups of Strangers
H Heroes of Velmar
I Intertwined
J Jamboree
K Karl Coder

Do not open before the contest has started.

Advice, hints, and general information

• The problems are not sorted by difficulty.

• Your solution programs must read input from standard input (e.g. System.in in Java or
cin in C++) and write output to standard output (e.g. System.out in Java or cout
in C++). For further details and examples, please refer to the documentation in the help
pages for your favorite language on Kattis.

• For information about which compiler flags and versions are used, please refer to the
documentation in the help pages for your favorite language on Kattis.

• Your submissions will be run multiple times, on several different inputs. If your submission
is incorrect, the error message you get will be the error exhibited on the first input on which
you failed. E.g., if your instance is prone to crash but also incorrect, your submission
may be judged as either “Wrong Answer” or “Run Time Error”, depending on which is
discovered first. The inputs for a problem will always be tested in the same order.

• If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem, or that
the answer to the question is simply irrelevant to solving the problem.

• In general we are lenient with small formatting errors in the output, in particular whitespace
errors within reason, and upper/lower case errors are often (but not always) ignored. But
not printing any spaces at all (e.g. missing the space in the string “1 2” so that it becomes
“12”) is typically not accepted. The safest way to get accepted is to follow the output
format exactly.

• For problems with floating point output, we only require that your output is correct up to
some error tolerance. For example, if the problem requires the output to be within either
absolute or relative error of 10−4, this means that

– If the correct answer is 0.05, any answer between 0.0499 and .0501 will be accepted.

– If the correct answer is 500, any answer between 499.95 and 500.05 will be accepted.

Any reasonable format for floating point numbers is acceptable. For instance, “17.000000”,
“0.17e2”, and “17” are all acceptable ways of formatting the number 17. For the definition
of reasonable, please use your common sense.

Problem A
Aperiodic Appointments

Nick has always struggled with maintaining habits. The problem is that he just can’t stop
maintaining them. If Nick does something K times in a row, he has to keep doing it forever.

Luckily, he has started visiting Dr Patternson, an expert in PBT (Pattern Breaking Therapy).
The principle of PBT is simple: Nick will visit Dr Patternson every day, and if he has done the
same thing K times in a row on a specific visit, the doctor will charge him money. This will
motivate Nick to not continue this habit.

PBT has worked out great for Nick, as he has now successfully quit all his habits. Except for
one, the habit of visiting Dr Patternson. The frequent visits are starting to take a toll on Nick’s
economy, so your task is to calculate how many times he has to pay the doctor for the next N
days.

Formally, let s = s1s2s3 . . . sN be a string consisting of zeroes and ones. A one means that
Nick has to pay the doctor on the ith day. This string is generated one character at a time, in the
following way:

1. si = 0 if i ≤ K.

2. If i > K, then si = 1 if the previous characters contains a pattern that repeats K times.
More specifically, let s′ = s1s2 . . . si−1. If there is a nonempty string t such that the last
|t| ·K characters of s′ can be written as t+ t+ · · ·+ t, then si = 1. Otherwise si = 0.

You are given the numbers N and K, and your task is to calculate the number of ones in the
string s.

The picture represents Sample 1. An angry face means that Nick had to pay on the
corresponding day.

Input
The input consists of one line with the integers N and K (1 ≤ N ≤ 109, 2 ≤ K ≤ 109).

Output
Print one integer, the number of ones in the string s.

Sample Input 1 Sample Output 1

7 2 3

Sample Input 2 Sample Output 2

99 5 19

NCPC 2023 Problem A: Aperiodic Appointments 1

This page is intentionally left blank.

Problem B
Berry Battle 2

Picture by MAKY.OREL, public domain

Erik and his grandpa often go to the forest to pick blueberries.
Grandpa always finds the most berries, and even though it is not
a competition, Erik has had enough of this. He has observed that
grandpa uses a simple greedy strategy to pick as many berries as
possible. With this information, Erik will try to finally pick at
least as many berries as grandpa.

The blueberry shrubs can be represented as a string s =
s1s2 . . . sN of length N = 105, consisting of characters . and b.
If si = b, then there is a berry at position i, otherwise there is no
berry there. There will be exactly N/2 berries to start with, and
they are distributed uniformly at random.

The berry picking takes place in turns. In one move, a person can choose a position i
(1 ≤ i ≤ N − 3), and pick all the berries at positions i, i+ 1, i+ 2, and i+ 3. Grandpa makes
the first move, then Erik makes a move, then grandpa, and so on. Grandpa will always greedily
make a move that picks as many berries as possible. Among all such moves, he will pick one
uniformly at random.

You are given the string s, and your task is to write a program that decides what moves Erik
should make in order to pick at least as many berries as grandpa.

Interaction
The first line of input contains the number N , the length of the string s. This number will always
be equal to 105, except for in the sample. Your program does not have to solve the sample to get
accepted.

The second line contains the string s of length N . This string has exactly N/2 characters b,
and their positions are generated uniformly at random.

Then, your program should start interacting with the grader. When it is grandpa’s turn,
you should read a single integer i (1 ≤ i ≤ N − 3), meaning that grandpa picks the berries at
positions i, i + 1, i + 2, and i + 3. When it is your turn, you should instead print a number i,
meaning that you pick the berries at positions i, i+ 1, i+ 2, and i+ 3.

If it is your turn and there are no more berries, your program should terminate without
printing anything more. If it is grandpa’s turn and there are no berries, then the grader will not
make any more moves, and your program should also terminate without printing anything more.
If you picked at least as many berries as grandpa, you pass the test case.

Each turn, grandpa greedily makes a move that picks as many berries as possible, and among
all such moves, he chooses one uniformly at random.

The strings s were generated beforehand, so they are the same across different submissions.
However, grandpa’s behaviour is randomized every submission, so it is possible to get different
results if you submit the same code twice.

There will be 100 test cases. It is guaranteed that there exists a solution that passes this many
cases with very high probability.

NCPC 2023 Problem B: Berry Battle 2 3

https://commons.wikimedia.org/wiki/File:Blueberry_-_Vaccinium_myrtillus_(fruit).jpg

Example
In the sample, Erik and grandpa get 5 berries each, which means that Erik achieved his goal.
At the very start of the game, the maximum number of berries possible to pick in one move is
3. There are a 4 possible choices of i that gets 3 berries: 1, 2, 3 and 6. Grandpa chooses one of
these uniformly at random which ends up being i = 2. After that, Erik chooses i = 6 which
gives him three berries as well. In the last two turns, both grandpa and Erik pick two berries.

Read Sample Interaction 1 Write

20
.bbb.b.bb...b.b...bb
2

6

13

17

NCPC 2023 Problem B: Berry Battle 2 4

Problem C
Converting Romans

Roman numerals on stern of the ship Cutty Sark
showing draught in feet. The numbers range from 13 to

22, from bottom to top. (CC BY-SA 3.0)

The Roman numerals are a numeral system that originated in
ancient Rome and was widely used throughout Europe well into
the Late Middle Ages. It differs from the Arabic system that we
mostly use today in that numbers are written with combinations
of letters from the Latin alphabet, where each letter is assigned
a fixed integer value. Over the years many different letters were
used, which was a cause of frequent confusion. But “modern”
style uses only these seven:

I V X L C D M
1 5 10 50 100 500 1000

A very common misunderstanding of the Roman numerals is
that they use a universal subtractive syntax. In a subtractive syn-
tax, a lower digit written before a larger digit will be subtracted
from the larger digit. 4 can be written as IIII and IV (5 − 1).
Romans themselves only really used the subtractive syntax for
smaller numbers. For larger numbers, it was largely avoided,
to give more clarity. For example, 499 can be written LDVLIV,
XDIX, VDIV or ID, while older sources most likely would use CDXCIX. Ain’t Roman numbers
fun?

You are given n numbers written in the Roman numeral system, and your task is to convert
them to the regular Arabic number system.

For the purposes of this problem we will subtract any digit written to the left of a larger digit,
even if they are not directly adjacent.

Input
The inputs starts with an integer 0 < n ≤ 103. Then follow n lines, each containing up to 3 · 105
Roman digits. The total number of Roman digits in the input is at most 3 · 105.

Output
Output the corresponding Arabic numbers, one number per line.

Sample Input 1 Sample Output 1

5
CDXCIX
ID
IV
IIIIV
IIIIIIV

499
499
4
1
-1

NCPC 2023 Problem C: Converting Romans 5

https://en.wikipedia.org/wiki/Roman_numerals#/media/File:CuttySarkRomNum.jpg
https://en.wikipedia.org/wiki/Roman_numerals#/media/File:CuttySarkRomNum.jpg
https://en.wikipedia.org/wiki/Roman_numerals#/media/File:CuttySarkRomNum.jpg

This page is intentionally left blank.

Problem D
Die Hard

Miwin’s dice by Dr.M.Winkelmann, public domain

John and Hans are playing a game involving 3 dice. Even
though they are all 6-sided, they are not guaranteed to be identical.

First John picks one of the dice and then Hans picks one of the
remaining two. Then they both roll their chosen die. If they
roll the same number, they both re-roll their die. Otherwise the
winner is the one who rolled the highest number.
In case neither John or Hans can win with their chosen dice, they
do not bother to re-roll the dice indefinitely and no winner is
declared.

Can you help John pick a die that guarantees that he wins with a probability of at least 1
2
?

Input
The input consists of three lines. Line i contains 6 positive integers xj (1 ≤ xj ≤ 1000),
describing the sides of the i’th die.

Output
Output the smallest i ∈ {1, 2, 3}, such that John can pick die i and be guaranteed to win with
probability at least 1

2
. If no such die exists, output “No dice”.

Sample Input 1 Sample Output 1

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

1

Sample Input 2 Sample Output 2

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3

3

Sample Input 3 Sample Output 3

2 2 4 4 9 9
1 1 6 6 8 8
7 7 5 5 3 3

No dice

Sample Input 4 Sample Output 4

1 1 1 1 1 1
2 2 2 2 2 2
2 2 2 2 2 2

No dice

NCPC 2023 Problem D: Die Hard 7

https://commons.wikimedia.org/wiki/File:Miwin_Wuerfel_Titan.gif

This page is intentionally left blank.

Problem E
Electronic Components

Picture by Umberto, Unsplash Licence

Sara is doing her summer internship at NCPC (Never Crash-
ing Personal Computers). One day, a rare creature appeared in
the office: an algorithmic problem!

The company has a machine that places electronic compo-
nents on circuit boards. Normally, it would do this one component
at a time. But recently the machine has received an update which
allows it to place two different components simultaneously. The
bottleneck then becomes the component with greater placement
time. Now it is far from obvious what strategy the machine should use in order to minimize the
total placement time. Sara decides to write an algorithm to determine this strategy.

You have N different types of electronic components. There are fi copies of the ith type, and
the components of this type have a placement time of ti nanoseconds. The goal is to place all of
the components using a sequence of moves. In one move, the machine can take two components
of type i and j, where i 6= j, and place both of them simultaneously. This takes max(ti, tj)
nanoseconds. The machine can also place a single component of type i in one move, which
takes ti nanoseconds.

Calculate the minimum possible time to place all components.

Input
The first line of input contains the integer N (1 ≤ N ≤ 1000).

The following N lines each contain two integers fi and ti (1 ≤ fi ≤ 104, 1 ≤ ti ≤ 109).

Output
Print one integer, the minimum time to place all components.

Sample Input 1 Sample Output 1

3
2 7
2 1
3 10

31

Sample Input 2 Sample Output 2

3
2 10
2 11
2 12

35

NCPC 2023 Problem E: Electronic Components 9

https://unsplash.com/photos/jXd2FSvcRr8

Sample Input 3 Sample Output 3

4
2 11
7 10
3 5
1 1

72

NCPC 2023 Problem E: Electronic Components 10

Problem F
Factor-Full Tree

Aivar is very good at number theory. In fact, it is the only thing he is good at, but this doesn’t
stop him from achieving great things. However, if Aivar wants to solve any problem in life, he
first needs to convert it to number theory.

For example, consider a rooted tree with N vertices. In order to deal with such structures,
Aivar first constructs a divisor labelling of the tree. A divisor labelling is a way to label each
vertex v with a positive integer xv so that v is an ancestor of u if and only if xv divides xu.

After constructing such a labelling, Aivar can simply forget about the tree and just think
about the list of numbers x1, x2, . . . , xN .

You are given a rooted tree with N vertices, and your task is to find a divisor labelling. The
vertices are numbered from 1 to N , and 1 is the root.

Input
The first line contains an integer N (1 ≤ N ≤ 60).

The following N − 1 lines each contain two integers u and v (1 ≤ u, v ≤ N , u 6= v),
meaning that an edge goes between vertices u and v. These edges will form a tree.

Output
Print one line with N integers, the numbers x1, x2, . . . xN . These numbers must satisfy 1 ≤
xi ≤ 1018. It can be shown that under these constraints, an answer always exists.

Sample Input 1 Sample Output 1

5
1 2
1 3
3 4
3 5

1 2 3 21 33

NCPC 2023 Problem F: Factor-Full Tree 11

This page is intentionally left blank.

Problem G
Groups of Strangers

Picture Image by macrovector at Freepik

A software company resulting from several recent mergers
consists of a handful of offices in different cities. At each office
there is a HR manager who knows everyone working at that
office. Additionally, there are of course a lot of persons in the
workforce that know each other, also across the offices. Knowing
each other in this context is a symmetric relation, if employee a
knows employee b, then b also knows a. In comparison, while
everyone in the workforce (hopefully) knows of the CEO, that does not mean the CEO knows
everyone. In fact, while the CEO does know all the HR managers, she does not know that many
other employees. This has got to change!

One of the HR managers is instructed to plan a company outing to let people get to know
each other better. Unfortunately, it seems impossible to a find a hotel that can accommodate
the whole workforce. Maybe he can turn this into an advantage? He is thinking that by using
up to three hotels in the vicinity of each other, perhaps it is possible to divide the employees in
three groups, one per hotel, so that no two employees in a group already know each other? That
would certainly encourage new acquaintances.

In this early stage in the planning, he doesn’t care about the sizes of the groups, but only
wants to see if such a division is at all possible. He asks you to help him and provides you with
a complete list of pairs of employees who know each other. However, you are not told who
the HR managers or CEO are, but you know that the CEO knows at most 15 employees (this
includes the HR managers) and that the company is distributed over at most 8 offices.

Input
The input consists of one line with the integers N and M (2 ≤ N ≤ 1000, 1 ≤M ≤ 100000),
the number of employees and the number of pairs of employees that know each other. Next
follow M lines each containing two integers a and b (1 ≤ a 6= b ≤ N), indicating that employee
a knows employee b.

It is guaranteed that for the given test cases, there is at least one way to divide the employees
into offices with HR managers and a CEO, like in the description. To summarize, the CEO is an
employee who knows at most 15 other people. The rest of the employees can be partitioned into
at most 8 offices, where each office has an employee (the HR manager) who knows all of the
other employees in that office. In addition, the CEO knows all of the HR managers. Note that
employees from different offices can know each other.

Output
If it is possible to divide the employees in at most three groups so that no pair that know each
other are in the same group, output one row with the group identity 1, 2, 3 for each employee in
the same order they were numbered in the input. Use a single space between two subsequent
employees’ group identities. If multiple solutions exist, you may output any. If no such group
partitioning exists, output “Impossible”.

NCPC 2023 Problem G: Groups of Strangers 13

https://www.freepik.com/free-vector/office-people-set-with-situations-work-illustration_14260806.htm#page=2&query=teamwork%20cartoon%20office&position=19&from_view=search&track=ais

Sample Input 1 Sample Output 1

4 3
1 2
1 3
3 4

1 2 2 3

Sample Input 2 Sample Output 2

4 6
1 2
1 3
1 4
2 3
2 4
3 4

Impossible

NCPC 2023 Problem G: Groups of Strangers 14

Problem H
Heroes of Velmar

Welcome to the world of Heroes of Velmar, the critically acclaimed trading card game
developed by Sidney Games! After the tremendous success of the physical card game, Sidney
Games has decided to take it to the next level and transform it into an immersive video game
experience.

As Sidney Games embarks on this ambitious video game project, they seek the expertise of
talented developers like you to bring this digital version to life. The challenge lies in coding
the algorithm that determines the winner in the virtual battles that unfold between players. The
video game will need to retain the same core mechanics as the original card game, where players
compete on three distinct locations over six turns, with abilities and power levels shaping the
outcomes.

The full rules of the game are listed below. You are given the state of the locations after
Setup and Gameplay have finished and the End of the Game has been reached. Sidney Games
has tasked you with implementing the Location Resolution part of the game rules, including the
application of Special Abilities, to determine the winner.

The game designers have provided you with images of the cards as well as a JSON file with
their specifications.

Heroes of Velmar - Game Rules
Objective

The objective of the two-player card game Heroes of Velmar is to win more locations than the
opponent over six turns. If there is a tie, the total power level across all locations acts as a
tiebreaker.

Setup

1. Each player selects a deck of cards containing heroes with different abilities and power
levels.

2. The players shuffle their decks and draw a starting hand of 7 cards each.

3. Designate three distinct locations for the battle. Each location will have its own separate
battlefield.

Gameplay

1. Each player draws 1 card from the deck, to their hand, if possible. Maximum cards per
hand is 7.

2. Players take turns playing cards from their hand on any of the three locations.

3. On each turn, players have energy equal to the turn number, for example, on Turn 3, they
have 3 energy to spend.

4. Each card has a cost that must be paid using energy to play it on a location.

5. Players can play as many cards as they want as long as the following conditions are met:

NCPC 2023 Problem H: Heroes of Velmar 15

(a) They have sufficient energy to spend on the card.

(b) The location has an empty spot. Each player has 4 available spots per location.

6. The power level of each card represents its strength in the game.

7. When the turn ends, the energy not used is lost.

End of the Game

1. The game ends after six turns, at which point locations are resolved, with each location
having a winner or a tie.

2. The player who wins the most locations is the overall winner.

3. If the players win an equal number of locations, the total power level across all locations
is used as a tiebreaker to determine the winner.

4. If the total power level across all locations is also tied, then the game results in a tie.

Location Resolution

1. Locations are resolved separately at the end of the game.

2. Compare the total power levels of all cards played by each player at the location after
applying special abilities.

3. The player with the higher total power level wins the location.

4. If there is a tie, no one wins the location.

Special Abilities

1. Some cards have special abilities that can affect the game. These abilities trigger at the
end of the game, before location resolution.

2. Abilities can buff the card’s power level, interact with other cards, or manipulate the game
state.

3. Two cards that portray the same character are considered to portray distinct characters for
the sake of abilities.

The game Heroes of Velmar offers a mix of strategic card play, resource management, and
tactical decision-making. Players must choose their heroes wisely, coordinate their plays, and
employ their unique abilities to outwit their opponents and emerge victorious in the epic battle
for control over Velmar!

Card design

Card Explanation:

• Top Left Corner: The energy cost required to play the card on the battlefield.

• Top Right Corner: The power level of the card, representing its strength.

NCPC 2023 Problem H: Heroes of Velmar 16

• Text on the Bottom: The name of the card, identifying its character.

• Text Underneath: The card’s ability, describing its unique effect during gameplay.

The cards are shown on the next page.

Input
Input consists of six lines representing the state of the three locations after six turns of play. This
means that there will be at most 24 cards total listed in the input.

First the left location is described, then the center location is described, and finally the right
location is described. Each location is described by two lines, the first of which represents player
1’s cards and the second of which represents player 2’s cards. Each line lists the number of cards
in the line and then the names of the cards played by the player, separated by spaces. There will
be at most four cards in each line.

Note that a player may leave a location empty. Each input is guaranteed to be a valid
reachable final game state according to the game rules.

Output
Output "Player 1" if player 1 won, "Player 2" if player 2 won, or "Tie" if there was
no victor.

Sample Input 1 Sample Output 1

3 Shadow Seraphina Ironwood
2 Voidclaw Voidclaw
1 Vexia
0
1 Ranger
0

Player 1

Sample Input 2 Sample Output 2

1 Guardian
1 Anvil
2 Seraphina Seraphina
1 Ranger
2 Ironwood Ranger
1 Guardian

Tie

Sample Input 3 Sample Output 3

1 Guardian
1 Anvil
2 Seraphina Seraphina
1 Ranger
1 Ironwood
1 Guardian

Player 2

NCPC 2023 Problem H: Heroes of Velmar 17

NCPC 2023 Problem H: Heroes of Velmar 18

Problem I
Intertwined

NCPC (Nordic Cargo Plane Control) are testing a new engine for their cargo planes. To this
end they have bound a strong and sturdy infinitely thin rope to the centre of their testing platform,
and to the engine. We will place a coordinate system onto this testing platform such that the
rope is bound at the origin and lays along the positive x-axis to (d, 0). On this testing platform
there are also a number of infinitely thin pillars that can stop the rope, but ignore the engine. As
the engine is started it starts rotating the rope counter-clockwise around the origin until it hits a
pillar, at which point it is caught and starts rotating around that pillar counter-clockwise instead.
The engine is then rotating at a smaller radius as some of the rope is caught between the origin
and this pillar. This keeps going until the rope is too short to reach any other pillars.

Running these tests, buying all this infinitely thin rope and setting up these infinitely thin
pillars, is expensive. Besides, the workers keep getting these nasty paper-like cuts from all these
infinitely thin objects. It would be much more economical to just simulate the behaviour.

Input
The first line contains an integer n, the number of pillars, and an integer d, the length of the rope
(1 ≤ n ≤ 105, 1 ≤ d ≤ 109).

The following n lines each contain two integers xi, yi, the coordinates of the ith pillar
(−109 ≤ xi, yi ≤ 109) for i ∈ 1, 2, . . . , n. None of these pillars will lie on the rope.

Output
Print one line with an integer i, meaning that the rope will end up spinning around the ith pillar
in the input. Note that this index is 1-indexed. If the rope doesn’t collide with any pillars i = −1.
It is guaranteed that changing the input d by at most ±10−6 will not change i.

Sample Input 1 Sample Output 1

5 200
4 4
4 -4
3 1
-4 4
-4 -4

1

NCPC 2023 Problem I: Intertwined 19

This page is intentionally left blank.

Problem J
Jamboree

Picture Image by brgfx at Freepik

A group of scouts are preparing to go to a large meeting with
other scouts. Their leader Hildeborg, in spirit of the scout motto
“be prepared”, wants to distribute some useful items among the
scouts that they most probably will need on their adventure. The
items come in different sizes, so to make this as fair as possible,
she wants to make sure that the total size of items carried by any
scout is as small as possible. Furthermore, Hildeborg does not
want to give more than two items to any scout as she is afraid that it otherwise will be too
hard for them to remember to bring everything. Given the sizes of the items, what is the least
maximum total size, computed as the sum of items, any scout will have to carry?

Input
The first line of input contains two positive integers N and M (1 ≤ N ≤ 2M , 1 ≤M ≤ 100).
N is the number of useful items, and M is the number of scouts. The second line contains N
positive integers ai (1 ≤ ai ≤ 107) giving the sizes of the items.

Output
Print one integer, the smallest total size that any scout has to carry.

Sample Input 1 Sample Output 1

3 4
10 10 10

10

Sample Input 2 Sample Output 2

5 4
9 12 3 9 10

12

NCPC 2023 Problem J: Jamboree 21

https://www.freepik.com/free-vector/happy-kids-camping-tent_33834317.htm#page=2&query=camping%20cartoon&position=38&from_view=keyword&track=ais

This page is intentionally left blank.

Problem K
Karl Coder

Karl is an aspiring C programmer, and is excited by the risks
and rewards of low-level manual memory management. In the
program he currently develops, he stores a string containing N non-
zero bytes into a buffer named “buf”. By mistake he accidentally
made the buffer 2N bytes in size. The last N bytes of the buffer
consists of only zero-bytes.

Now Karl needs to know the value N , the size of the string, in a separate part of the program.
Traditionally you would recover the length of a string using the strlen-function, which reports
the position of the first zero-byte in the provided buffer using a linear scan. However, Karl finds
that this is much too slow, and that it defeats the advantage of using C in the first place. Can you
help Karl efficiently recover N without crashing his program?

index · · · -1 0 1 2 3 4 5 6 7 8 · · ·
buf · · · × 78 67 80 67 0 0 0 0 × · · ·

The contents of the buffer in sample interaction 3 are shown here.

Interaction
This is an interactive problem where interaction proceeds in rounds. In each round your program
can attempt to read a byte from the buffer or report the answer (the value of N):

read: Write a line containing “buf[i]” if you want to try to read byte i of the buffer. If
0 ≤ i < 2N , then you will get the value of the byte stored in the buffer at index i. If
i < N then this will be an integer between 1 and 255, otherwise it will be 0. If i ≥ 2N or
i < 0, you will get the response “Segmentation fault (core dumped)” and
your program should exit.

answer: Write a line containing “strlen(buf) = M” if you want to report that you think
that N = M . Afterwards your program should exit. Your submission will be accepted
if you answered correctly, if you did not trigger a segmentation fault, and if you did not
attempt to read entries from the buffer too many times.

A maximum of 2dlog2Ne reads can be made. If your program attempts to read from the buffer
after reaching the limit, it will get the response “Too many reads” and your program should
then exit.

It is guaranteed that 2 ≤ N ≤ 1018.

Read Sample Interaction 1 Write

buf[1]

65

buf[2]

0

strlen(buf) = 2

NCPC 2023 Problem K: Karl Coder 23

Read Sample Interaction 2 Write

buf[1]

50

buf[5]

0

buf[7]

Segmentation fault (core dumped)

Read Sample Interaction 3 Write

buf[0]

78

buf[1]

67

buf[2]

80

buf[3]

67

buf[4]

Too many reads

NCPC 2023 Problem K: Karl Coder 24

